
Оптимизация и выполнение
декларативных запросов

Б. Новиков

Высшая школа экономики, Санкт-Петербург

!1

2 2

!2

Школьная арифметика

• ab + ac = a(b+c)

• Стоимость: 2m+a > m+a

• Вычисление многочленов по схеме Горнера

• При условии, что стоимость умножения и
сложения не зависит от значений

• Это не всегда верно: 99 a = 100 a + a

!3

ao + x(a1 + x(a2 + x(a3 + …)))

a0 + a1x + a2x2 + a3x3 + …

А теперь …

!4

Декларативные запросы
• Выразительность

• Эффективное выполнение (оптимизация)

• Манифест 3 поколения БД(1990):

When the programmer navigates to desired data in this fashion, he is
replacing the function of the query optimizer by hand-coded lower level
calls.

It has been clearly demonstrated by history that a well-written, well-tuned,
optimizer can almost always do better than a programmer can do by
hand.

!5

Что нужно для оптимизации?
• Запросы компилируют в алгебраическое выражение (обычно - дерево)

• Алгебра (не так важно, какая)

• Алгебраические тождеста или правила эквивалентныэх
трансформаций планы ов

• Алгоритмы для операций

• Модели стоимости для алгоритмов и для планов

• Целевая функция (функция стоимости)

!6

Тождества в реляционной алгебре: селекция
и проекция

σ [p] σ [q] R = σ [p⋀q] R
π [A] R = π [A] π [AB] R
σ[p(A)] π [B] R = π [B] σ [p(A)] R, if
A ⊆ B
 σ [p∨q] R = (σ [p] R) ⋃ (σ [q] R)

 σ [p∨ ⫮ q] R = σ [p] R ∖ σ [q] R
 σ [p(R)] (R ▷◁ S) = (σ [p(R)] R) ▷◁ S

 σ [p] (R ⋃ S) = (σ [p] R) ⋃ (σ [p] S) 

R ▷◁ S = S ▷◁ R
R ⋃ S = S ⋃ R
R ⋂ S = S ⋂ R
(R ▷◁ S) ▷◁ T = R ▷◁ (S ▷◁ T)
(R ⋃ S) ⋃ T = R ⋃ (S ⋃ T)
(R ⋂ S) ⋂ T = R ⋂ (S ⋂ T)
R ▷◁ (S ⋃ T) = (R ▷◁ S) ⋃ (R ▷◁ T)
R ▷◁ (S ⋂ T) = (R ▷◁ S) ⋂ (R ▷◁ T)

!7

Алгоритмы и модели стоимости

• Выборка хранимых данных

• Full scan : card (R)

• Index + scan card(s(R))

• Index only scan

• . . .

• Бинарные операции (join, group,
eliminate duplicates, …)

• Nested loops card(R)*card(S),
card(R)*card(S) / card(I)

• Sort-merge N log N + M log M
+ card (output)

• Hash M + N + card (output)

!8

SPJ запросы

• SPJ = Select Project Join

• Операции sele3ct и project сокращают объем данных , их следует
выполняясь как можно раньше

• Если эти операции применяются к промежуточным результатам, их
можно выполнить “на лету” при передаче между операциями

• Сложная часть оптимизации: в каком порядке выполнять операции
соединения

!9

Стратегия подготовки запросов

• Синтаксический разбор и построение дерева

• Переписывание запроса

• Логическая оптимизацйия ?

• Выбори оптимального плана

!10

Переписывание

• Упрощение условий фильтрации ?

• Устранение вложенных поздапросов и выражений

• Проталкивание фильтров и проекций к листьям

•

!11

Алгоритмы оптимизацйии

• Снизу вверх, сверху вниз, трансформационные

• Точные или прилближенные

!12

Односторонние или кустистые планы

• Сокраение размеров пространства
планов

• Односторонние планы позволяют
использжовать индексы

• Во многих случаях оптимальные
планы являются кустистыми

!13

Query Optimization and Execution

Алгорим динамического программирования

!14

a b c

ab ac ba bc ca cb

abc bca cab

Алгоритм динамического программирования

• В общем случае высокая сложность по памяти и по времени

• Сложность зависит от структуры графа запроса, для некоторых
классов графов полиномиальная

• Только алгоритм NL -> полиномиальная сложность

• Односторонние или кустистые планы?

!15

Стратегия работы оптимизатора

• Небольшие запросы - точный алгоритм (динамического
программирования)

• Большие запросы - зыбкая область

• Случайные блуждания

• Генетичевкий алгоритм

• Отавить, как написано

!16

Граф запроса
SELECT …

FROM boarding_pass b

JOIN flight f

ON b.flight_id = f.flight_id

JOIN gate g

ON g.flight_id=f.flight_id and b.flight_id=g.flight_id

JOIN airport dep_a

ON dep_a.code=f.dep_code

AND b.dep_code = dep_a.code

JOIN airport arr_a

ON arr_a.code=f.arr_code

AND b.arr_code = arr_a.code

…

!17

FLIGHT

AIRPORT

AIRPORT

CITY

CITY

COUNTRY

BOARDING_PASS

COUNTRY

GATE Departure

Arrival

PASSENGER

ID_DOCUMENT

COUNTRY

Динамическое программирование с учетом
графа запросов

• Исключается рассмотрение
подпланов, которые не могу
появиться в полном плане

• Сложностть алгоритма зависит
не от размеров запроса, а от
количества клик

• Для линейный частей алгорим
полиномиален

!18

FLIGHT

AIRPORT

AIRPORT

CITY

CITY

COUNTRY

BOARDING_PASS

COUNTRY

GATE Departure

Arrival

PASSENGER

ID_DOCUMENT

COUNTRY

Приближенные алгоритмы "снизу вверх"

• Жадный алгоритьм:

• на каждом шаге выбирается один лучший частичный план

• Итеративное динамическое программирование (Коссман, 2000)

• Чередование динамического программирования и жадного

!19

Планы не всегда оптимальны

• Минимизируется оценка стоимости, но не фактическая стоимость

• Высокая сложность делает невозможной точную оптимизацию

• Модели стоимости не могут быть точными

• Оценки статистических характеристик (размеров) промежуточных результатов
неточны

!20

Новые идеи

!21

Перечисление планов «сверху вниз»

G. Moerkotte (2014)

• Гиперграф запроса:

• Вершины – таблицы

• Дуги – условия соединения

• несимметричность операций (outer join)

!22

R1R2R3

R0

R1R2R3

R0

Оценки кардинальности
VLDB 2016 Статья группы из Мюнхена

• Анализ качества оптимизаторов промышенных систем

• Никакие статистики, кроме кардинальности, для оценки промежуточных
результатов не используются

Основные результаты

• Все оптимизаторы ошибаются в оценках, часто на порядки

• Внедрение точных оценок кардинальности существенно улучшает качество планов

• Качество функции стоимости не так сущсственно влияет на качество планов

!23

Приближенный алгорим динамического
программирования: линолеум еаризацйия

1. Линеаризация графа запроса

• Линеаризация - это односторонний план без выбора алгорима (полиномиально)

2. Динамическое программирование с кустистыми планами, только подпланах-отрезках

• Квадратичная сложность по числу операций соединения

• Применим для запросов, содержащих до 100 соединений

!24

FLIGHT AIRPORT AIRPORT CITY CITY COUNTRYBOARDING_PASS COUNTRYGATEPASSENGERID_DOCUMENTCOUNTRY

Адаптивное динамическое программирование
(SIGMOD 2018 та же группа из Мюнхена)

1. Оценка сложности запроса

2. Для малых запросов используется ДП на графах

3. Средние запросы (до 100) - линеаризайция

4. Большие запросы: итеративное ДП с линеаризацией

Возможна обработка запросов, содержащих тысячи операйций соединения

!25

memSQL

• Перечисление сверху вниз

• Переписывание подзапросов

• Раздельная оптимизация подзапросов

• Эвристики для получения отсекающих оценок при исчерпывающем
поиске

!26

Переписывание подзапросов

• Проталкивание фильтров в подзапросы

• Проталикивание join, если это не ухудшает стоимость

Select …
(select …)
From (select …) …
Where … in (select ...) …

!27

Эвристики для отсечений при
исчерпывающем поиске

• На основе эвристик генерируется несколько планов хорошего
качества, не обязательно оптимальных

• Оценки стоимости этих планов используются для отсечений при
исчерпывающей оптимизации

!28

Целочисленное линейное программирование

• Применение обычных оптимизационных пакетов (исслед. Допераций)

• Переменные (0/1) для операций соединения

• 6 видов ограничений для условий, порядка выполнения операций и
др.

• Линейная функция стоимости

• Оптимизируется примерно 50 соединений за несколько минут

!29

Адаптивная оптимизация

!30

Решение: адаптивная оптимизация?

• Повторная оптимизация во время
выполнения, когда имеются
уточненные оценки селективности и
кардинальности

• Маршрутизация для операций без

состояния

• Точки материализации для планов

общего вида

• Почти не спользуется в

промышленных системах

!31

Optimize

Execute

Boris Novikov: Beyond SQL and Relations

Свойства алгоритмов операций

Без состояния С состоянием
Неблокирующие Filter

Project
Nested Loops
Symmetric Hach

Блокирующие Hash join
Sort
Aggregate

28-Jul-15 !32

Query Optimization and Execution

Маршрутизация неблокирующих операций

• Каждый объект направляется на
еще не пройденный фильтр с
лучшей селективностью

• Оценки селективности
динамически перевычисляются

Select *
from a_table
Where attr1=value1
and attr2=valeu2
and attr3 >= value3
 …

!33

Pipelined
Data

Routin
g

Filter
1

Filter
2

Filter
2

Query Optimization and Execution

Точки материализации
• Работает для операций с
состояниями

• Сохранение промежуточных
результатов в точке
материализации

• Повторная оптимизация
оставшейчя части запроса

• Часть уж евыполненной
работы может оказаться
ненужной

!34

Оптимизация без SQL

!35

Оптимизация для MapReduce

• Задача в терминах баз данных:

• Map = filter + unnest

• Reduce = GROUP BY

• Оптимизация внутри пользовательских функций map и reduce
невозможна

• Реструктуризация задач

• Объединение фаз, обрабатывающих однотиный вход

!36

Алгоритмы для операции соединения

• Map side

• Reduce side

• Both map and reducs

• Multi-way joins

!37

Оптимизатор AQUA

!38

Оптимизатор Stubby
• Аннотации

• Данные (разбиение, упорядочение, файлы)

• Опенации (схема, фильтры, …)

• Run-Time (статисника, оценки стоимости)

• Трансформации задач на основе аннотаций

• Совмещение map или reduce при совпадении схемы

• Совмедение map и reduce

• …

!39

Поддержка декларативных средств в
масштабируемых системах

• SCOPE, Asterix, Spark, …

• Развитый набор операций

• Обработка (фильтры, соединения и т.д.)

• Рассылка

• Альтернативные методы передачи данных между операциями

• Потенциал для оптимизации

• Модели стоимости могут быть проблемой

!40

Заключение: может ли SQL выжить?

• Языки запросов почти не используются для приложений класса
OLTP

• Пока SQL используется для OLAP, но:

• Data Science не знает ни о чем, кроме CSV

!41

